ROTATIONAL MOTION

Consider a rigid body rotating CCW about a fixed axis of rotation. Let's look at the motion of a particle
located at point P a distance ‘r’ from the axis of rotation.

As the body rotates the particle moves in a circular path of radius ‘r. The distance the particle moves
along this path is related to its angular position ‘@’ by the equation:

Now consider the motion of the particle between two points A and B.
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If the angular velocity changes from w; to ws in a time At = t; — t; , then the particle experiences an angular
acceleration:
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For a body rotating about a fixed axis, every particle on the body has the same rotational quantities A8,
w, and a. Thatis A, w, and a describe the rotational motion of the entire body.

Units

[6] = radians
[w] = rad/s = s™
[a] = rad/s® = s

* w and a are vector quantities (6 is not a vector because it fails to satisfy the laws of vector

addition)

= The direction of @ is given by the Right-Hand Rule (RHR) and the direction of & follows from its

definition |5 _ 4%
dt

RHR — Wrap your four right-hand fingers in the direction of rotation. Your extended thumb points in

the direction of @ .
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Mathematically, we have defined the rotational quantities 8, w, and a similar to how we defined the linear

guantities x, v, and a for linear motion.
angular acceleration, should also be similar.

Therefore, the rotational equations of motion with constant
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