Immediately after Tarzan steps off the cliff, the tension in the vine is 760 N . Just then, what are (a) the force on him from the vine in unit-vector notation and the net force on him (b) in unit-vector notation and as (c) a magnitude and (d) an angle relative to the positive direction of the x axis? What are the (e) magnitude and (f) angle of Tarzan's acceleration just then?
-24 There are two horizontal forces on the 2.0 kg box in the overhead view of Fig. 5-38 but only one (of magnitude $F_{1}=20 \mathrm{~N}$) is shown. The box moves along the x axis. For

Fig. 5-38 Problem 24. each of the following values for the acceleration a_{x} of the box, find the second force in unit-vector notation: (a) $10 \mathrm{~m} / \mathrm{s}^{2}$, (b) $20 \mathrm{~m} / \mathrm{s}^{2}$, (c) 0 , (d) $-10 \mathrm{~m} / \mathrm{s}^{2}$, and (e) $-20 \mathrm{~m} / \mathrm{s}^{2}$.
-25 Sunjamming. A "sun yacht" is a spacecraft with a large sail that is pushed by sunlight. Although such a push is tiny in everyday circumstances, it can be large enough to send the spacecraft outward from the Sun on a cost-free but slow trip. Suppose that the spacecraft has a mass of 900 kg and receives a push of 20 N . (a) What is the magnitude of the resulting acceleration? If the craft starts from rest, (b) how far will it travel in 1 day and (c) how fast will it then be moving?
-26 The tension at which a fishing line snaps is commonly called the line's "strength." What minimum strength is needed for a line that is to stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at $2.8 \mathrm{~m} / \mathrm{s}$? Assume a constant deceleration.
-27 SSM An electron with a speed of $1.2 \times 10^{7} \mathrm{~m} / \mathrm{s}$ moves horizontally into a region where a constant vertical force of $4.5 \times$ $10^{-16} \mathrm{~N}$ acts on it. The mass of the electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Determine the vertical distance the electron is deflected during the time it has moved 30 mm horizontally.
-28 A car that weighs $1.30 \times 10^{4} \mathrm{~N}$ is initially moving at $40 \mathrm{~km} / \mathrm{h}$ when the brakes are applied and the car is brought to a stop in 15 m . Assuming the force that stops the car is constant, find (a) the magnitude of that force and (b) the time required for the change in speed. If the initial speed is doubled, and the car experiences the same force during the braking, by what factors are (c) the stopping distance and (d) the stopping time multiplied? (There could be a lesson here about the danger of driving at high
speeds.) speeds.)
-29 A firefighter who weighs 712 N slides down a vertical pole with an acceleration of $3.00 \mathrm{~m} / \mathrm{s}^{2}$, directed downward. What are the (a) magnitude and (b) direction (up or down) of the vertical force on the firefighter from the pole and the (c) magnitude and (d) direction of the vertical force on the pole from the firefighter? -30 The high-speed winds around a tornado can drive projectiles into trees, building walls, and even metal traffic signs. In a laboratory simulation, a standard wood toothpick was shot by pneumatic gun into an oak branch. The toothpick's mass was 0.13 g , its speed before entering the branch was $220 \mathrm{~m} / \mathrm{s}$, and its penetration depth was 15 mm . If its speed was decreased at a uniform rate, what was the magnitude of the force of the branch on the toothpick?
$\bullet 31$ SSM WWW A block is projected up a frictionless inclined plane with initial speed $v_{0}=3.50 \mathrm{~m} / \mathrm{s}$. The angle of incline is $\theta=32.0^{\circ}$. (a) How far up the plane does the block go? (b) How long does it take to get there? (c) What is its speed when it gets
back to the bottom?

๑32 Figure 5-39 shows an overhead view of a 0.0250 kg lemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force \vec{F}_{1} has a magnitude of 6.00 N and is at $\theta_{1}=30.0^{\circ}$. Force \vec{F}_{2} has a magnitude of 7.00 N and is at $\theta_{2}=$ 30.0°. In unit-vector notation, what is the third force if the lemon half (a)

Fig. 5-39 Problem 32. is stationary, (b) has the constant velocity $\vec{v}=(13.0 \hat{\mathrm{i}}-14.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$, and (c) has the varying velocity $\vec{v}=$ $(13.0 t \hat{i}-14.0 t \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$, where t is time?
$\because 33$ An elevator cab and its load have a combined mass of 1600 kg . Find the tension in the supporting cable when the cab, originally moving downward at $12 \mathrm{~m} / \mathrm{s}$, is brought to rest with constant acceleration in a distance of 42 m .
©34 (50) In Fig. 5-40, a crate of mass $m=100 \mathrm{~kg}$ is pushed at constant speed up a frictionless ramp $\left(\theta=30.0^{\circ}\right)$ by a horizontal force \vec{F}. What are the magnitudes of (a) \vec{F} and (b) the force on the crate from the ramp?
$\because 35$ The velocity of a 3.00 kg particle is given by $\vec{v}=\left(8.00 t \hat{i}+3.00 t^{2} \hat{\mathrm{j}}\right)$ m / s, with time t in seconds. At the instant the net force on the particle

Fig. 5-40 Problem 34. has a magnitude of 35.0 N , what are the direction (relative to the positive direction of the x axis) of (a) the net force and (b) the particle's direction of travel?
थ36 Holding on to a towrope moving parallel to a frictionless ski slope, a 50 kg skier is pulled up the slope, which is at an angle of 8.0° with the horizontal. What is the magnitude $F_{\text {rope }}$ of the force on the skier from the rope when (a) the magnitude v of the skier's velocity is constant at $2.0 \mathrm{~m} / \mathrm{s}$ and (b) $v=2.0 \mathrm{~m} / \mathrm{s}$ as v increases at a rate of $0.10 \mathrm{~m} / \mathrm{s}^{2}$?
-037 A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a frozen lake, 15 m apart but connected by a rope of negligible mass. The girl exerts a horizontal 5.2 N force on the rope. What are the acceleration magnitudes of (a) the sled and (b) the girl? (c) How far from the girl's initial position do they meet?
$\because 38$ A 40 kg skier skis directly down a frictionless slope angled at 10° to the horizontal. Assume the skier moves in the negative direction of an x axis along the slope. A wind force with component F_{x} acts on the skier. What is F_{x} if the magnitude of the skier's velocity is (a) constant, (b) increasing at a rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$, and (c) increasing at a rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$?
$\because 39$ ILW A sphere of mass $3.0 \times 10^{-4} \mathrm{~kg}$ is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 37° with the vertical. Find (a) the push magnitude and (b) the tension in the cord.

- 40 (6) A dated box of dates, of mass 5.00 kg , is sent sliding up a frictionless ramp at an angle of θ to the horizontal.

Fig. 5-41 Problem 40.

Figure 5-41 gives, as a function of time t, the component v_{x} of the box's velocity along an x axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp?
๑44 Using a rope that will snap if the tension in it exceeds 387 N , you need to lower a bundle of old roofing material weighing 449 N from a point 6.1 m above the ground. (a) What magnitude of the bundle's acceleration will put the rope on the verge of snapping? (b) At that acceleration, with what speed would the bundle hit the ground?
-•42 (60 In earlier days, horses pulled barges down canals in the manner shown in Fig. 5-42. Suppose the horse pulls on the rope with a force of 7900 N at an angle of $\theta=18^{\circ}$ to the direction of motion of the barge, which is headed straight along the positive direction of an x axis. The mass of the barge is 9500 kg , and the magnitude of its acceleration is $0.12 \mathrm{~m} / \mathrm{s}^{2}$. What are the (a) magnitude and (b) direction (relative to positive x) of the force on the barge from the water?

Fig. 5-42 Problem 42.
-•43 SSM In Fig. 5-43, a chain consisting of five links, each of mass 0.100 kg , is lifted vertically with constant acceleration of magnitude $a=2.50$ $\mathrm{m} / \mathrm{s}^{2}$. Find the magnitudes of (a) the force on link 1 from link 2, (b) the force on link 2 from link 3, (c) the force on link 3 from link 4, and (d) the force on link 4 from link 5. Then find the magnitudes of (e) the force \vec{F} on the top link from the person lifting the chain and (f) the net force accelerating each link.
©044 A lamp hangs vertically from a cord in a descending elevator that decelerates at $2.4 \mathrm{~m} / \mathrm{s}^{2}$. (a) If the tension in the cord is 89 N , what is the lamp's

Fig. 5-43
Problem 43. mass? (b) What is the cord's tension when the elevator ascends with an upward acceleration of $2.4 \mathrm{~m} / \mathrm{s}^{2}$?
©45 An elevator cab that weighs 27.8 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of $1.22 \mathrm{~m} / \mathrm{s}^{2}$ and (b) decreasing at a rate of $1.22 \mathrm{~m} / \mathrm{s}^{2}$?
-•46 An elevator cab is pulled upward by a cable. The cab and its single occupant have a combined mass of 2000 kg . When that occupant drops a coin, its acceleration relative to the cab is $8.00 \mathrm{~m} / \mathrm{s}^{2}$ downward. What is the tension in the cable?
0047 The Zacchini family was renowned for their humancannonball act in which a family member was shot from a cannon using either elastic bands or compressed air. In one version of the act, Emanuel Zacchini was shot over three Ferris wheels to land in a net at the same height as the open end of the cannon and at a range of 69 m . He was propelled inside the barrel for 5.2 m and launched at an angle of 53°. If his mass was 85 kg and he underwent constant acceleration inside the barrel, what was the magnitude of the force propelling him? (Hint: Treat the launch as though it were along a ramp at 53°. Neglect air drag.)
$\bullet 48$ (6) In Fig. 5-44, elevator cabs A and B are connected by a short cable and can be pulled upward or lowered by the cable
above cab A. Cab A has mass 1700 kg ; cab B has mass 1300 kg . A 12.0 kg box of catnip lies on the floor of $\mathrm{cab} A$. The tension in the cable connecting the cabs is $1.91 \times 10^{4} \mathrm{~N}$. What is the magnitude of the normal force on the box from the floor?
-049 In Fig. 5-45, a block of mass $m=5.00 \mathrm{~kg}$ is pulled along a horizontal frictionless floor by a cord that exerts a force of magnitude $F=12.0 \mathrm{~N}$ at an angle $\theta=25.0^{\circ}$. (a) What is the magnitude of the block's acceleration? (b) The force magnitude F is slowly increased. What is its value just before the block is lifted (completely) off the floor? (c) What is the magnitude of the block's acceleration just before it is lifted (completely) off the floor?

Fig. 5-45
Problems 49 and 60.
$\because 50$ ©o In Fig. 5-46, three ballot boxes are connected by cords, one of which wraps over a pulley having negligible friction on its axle and negligible mass. The three masses are $m_{A}=30.0 \mathrm{~kg}, \quad m_{B}=40.0 \mathrm{~kg}, \quad$ and

Fig. 5-46 Problem 50. $m_{C}=10.0 \mathrm{~kg}$. When the assembly is released from rest, (a) what is the tension in the cord connecting B and C, and (b) how far does A move in the first 0.250 s (assuming it does not reach the pulley)?
$\bullet 51$
Figure 5-47 shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. One block has mass $m_{1}=1.30 \mathrm{~kg}$; the other has mass $m_{2}=$ 2.80 kg . What are (a) the magnitude of the blocks' acceleration and (b) the tension in the cord?
-052 An 85 kg man lowers himself to the ground from a height of 10.0 m by holding onto a rope that runs over a frictionless pulley to a 65 kg sandbag. With what speed does the man hit the ground if he started from rest?

Fig. 5-47
Problems 51 and 65.
-•53 In Fig. 5-48, three connected blocks are pulled to the right on a horizontal frictionless table by a force of magnitude $T_{3}=65.0 \mathrm{~N}$. If $m_{1}=12.0 \mathrm{~kg}, m_{2}=24.0 \mathrm{~kg}$, and $m_{3}=31.0 \mathrm{~kg}$, calculate (a) the magnitude of the system's acceleration, (b) the tension T_{1}, and (c) the tension T_{2}.

Fig. 5-48 Problem 53.
-054 (60) Figure 5-49 shows four penguins that are being playfully pulled along very slippery (frictionless) ice by a curator. The masses of three penguins and the tension in two of the cords are $m_{1}=12 \mathrm{~kg}$, $m_{3}=15 \mathrm{~kg}, m_{4}=20 \mathrm{~kg}, T_{2}=111 \mathrm{~N}$, and $T_{4}=222 \mathrm{~N}$. Find the penguin mass m_{2} that is not given.

Fig. 5-49 Problem 54.
-55 SSM ILW www Two blocks are in contact on a frictionless table. A horizontal force is applied to the larger block, as shown in Fig. 5-50. (a) If $m_{1}=2.3 \mathrm{~kg}$, $m_{2}=1.2 \mathrm{~kg}$, and $F=3.2 \mathrm{~N}$, find the magnitude of the force between the two blocks. (b) Show that if a force of the same

Fig. 5-50 Problem 55. magnitude F is applied to the smaller block but in the opposite direction, the magnitude of the force between the blocks is 2.1 N , which is not the same value calculated in (a). (c) Explain the difference.
${ }^{\circ} 56$ In Fig. 5-51a, a constant horizontal force \vec{F}_{a} is applied to block A, which pushes against block B with a 20.0 N force directed horizontally to the right. In Fig. 5-51b, the same force \vec{F}_{a} is applied to block B; now block A pushes on block B with a 10.0 N force directed horizontally to the left. The blocks have a combined mass of 12.0 kg . What are the magnitudes of (a) their acceleration in Fig. 5-51a and (b) force \vec{F}_{a} ?

Fig. 5-51 Problem 56.
-057 ILW A block of mass $m_{1}=3.70$ kg on a frictionless plane inclined at angle $\theta=30.0^{\circ}$ is connected by a cord over a massless, frictionless pulley to a second block of mass $m_{2}=2.30 \mathrm{~kg}$ (Fig. 5-52). What are (a) the magnitude of the acceleration of each block, (b) the direction

Fig. 5-52 Problem 57. of the acceleration of the hanging block, and (c) the tension in the cord?
$\because 58$ Figure 5-53 shows a man sitting in a bosun's chair that dangles from a massless rope, which runs over a massless, frictionless pulley and back down to the man's hand. The combined mass of man and chair is 95.0 kg . With what force magnitude must the man pull on the rope if he is to rise (a) with a constant velocity and (b) with an upward acceleration of $1.30 \mathrm{~m} / \mathrm{s}^{2}$? (Hint: A free-body diagram can really help.) If the rope on the right extends to the
ground and is pulled by a coworker, with what force magnitude must the co-worker pull for the man to rise (c) with a constant velocity and (d) with an upward acceleration of $1.30 \mathrm{~m} / \mathrm{s}^{2}$? What is the magnitude of the force on the ceiling from the pulley system in (e) part a, (f) part b, (g) part c, and (h) part d?
$\because 59$ SSM A 10 kg monkey climbs up a massless rope that runs over a frictionless tree limb and back down to a 15 kg package on the ground (Fig. 5-54). (a) What is the magnitude of the least acceleration the monkey must have if it is to lift the package off the ground? If, after the package has been lifted, the monkey stops its climb and holds onto the rope, what are the (b) magnitude and (c) direction of the monkey's acceleration and (d) the tension in the rope?
$\because 60$ Figure $5-45$ shows a 5.00 kg block being pulled along a frictionless floor by a cord that applies a force of constant magnitude 20.0 N but with an angle $\theta(t)$ that varies with time. When angle $\theta=25.0^{\circ}$, at what rate is the acceleration of the block changing if (a) $\theta(t)=$ $\left(2.00 \times 10^{-2} \mathrm{deg} / \mathrm{s}\right) t$ and (b) $\theta(t)=$ $-\left(2.00 \times 10^{-2} \mathrm{deg} / \mathrm{s}\right) t$? (Hint: The angle should be in radians.)
${ }^{\bullet 61}$ SSM ILW A hot-air balloon of mass M is descending vertically with downward acceleration of magnitude a. How much mass (ballast) must be thrown out to give the balloon an upward acceleration of magnitude a ? Assume that the upward force from the air (the lift) does not change because of the decrease in mass.
${ }^{\circ 0062}$ In shot putting, many athletes elect to launch the shot at an angle that is smaller than the theoretical one (about 42°) at which the distance of a projected ball at the same speed and height is greatest. One reason has to do with the speed the athlete can give the shot during the acceleration phase of the throw. Assume that a 7.260 kg shot is accelerated along a straight path of length 1.650 m by a constant applied force of magnitude 380.0 N , starting with an initial speed of 2.500 m / s (due to the athlete's preliminary motion). What is the shot's speed at the end of the acceleration phase if the angle between the path and the horizontal is (a) 30.00° and (b) 42.00° ? (Hint: Treat the motion as though it were along a ramp at the given angle.) (c) By what percent is the launch speed decreased if the athlete increases the angle from 30.00° to 42.00° ?
${ }^{\circ 0063}$ Figure 5-55 gives, as a function of time t, the force component F_{x} that acts on a 3.00 kg ice block that can move only along the x axis. At $t=0$, the block is moving in the positive direction of the axis, with a speed of $3.0 \mathrm{~m} / \mathrm{s}$. What are its (a) speed and (b) direction of travel at $t=11 \mathrm{~s}$?

Fig. 5-55 Problem 63.
ص.064 Figure 5-56 shows a box of mass $m_{2}=1.0 \mathrm{~kg}$ on a frictionless plane inclined at angle $\theta=30^{\circ}$. It is connected by a cord of negligible mass to a box of mass $m_{1}=3.0 \mathrm{~kg}$ on a horizontal frictionless surface. The pulley is frictionless and massless. (a) If the magnitude of horizontal force \vec{F} is 2.3 N , what is the tension in the connecting cord? (b) What is the largest value the magnitude of \vec{F} may have without the cord becoming slack?

Fig. 5-56 Problem 64.
-0065 Figure 5-47 shows Atwood's machine, in which two containers are connected by a cord (of negligible mass) passing over a frictionless pulley (also of negligible mass). At time $t=0$, container 1 has mass 1.30 kg and container 2 has mass 2.80 kg , but container 1 is losing mass (through a leak) at the constant rate of $0.200 \mathrm{~kg} / \mathrm{s}$. At what rate is the acceleration magnitude of the containers changing at (a) $t=0$ and (b) $t=3.00 \mathrm{~s}$? (c) When does the acceleration reach its maximum value?
-0066 Figure 5-57 shows a section of a cable-car system. The maximum permissible mass of each car with occupants is 2800 kg . The cars, riding on a support cable, are pulled by a second cable attached to the support tower on each car. Assume that the cables are taut and inclined at angle $\theta=35^{\circ}$. What is the difference in tension between adjacent sections of pull cable if the cars are at the maximum permissible mass and are being accelerated up the incline at $0.81 \mathrm{~m} / \mathrm{s}^{2}$?
-•067 Figure 5-58 shows three blocks attached by cords that loop over frictionless pulleys. Block B lies on a frictionless table; the masses are $m_{A}=6.00 \mathrm{~kg}, m_{B}=8.00$ kg , and $m_{C}=10.0 \mathrm{~kg}$. When the blocks are released, what is the tension in the cord at the right?

Fig. 5-57 Problem 66.

Fig. 5-58 Problem 67.

Ao068 A shot putter launches a 7.260 kg shot by pushing it along a straight line of length 1.650 m and at an angle of 34.10° from the horizontal, accelerating the shot to the launch speed from its initial speed of $2.500 \mathrm{~m} / \mathrm{s}$ (which is due to the athlete's preliminary motion). The shot leaves the hand at a height of 2.110 m and at an angle of 34.10°, and it lands at a horizontal distance of 15.90 m . What is the magnitude of the athlete's average force on the shot during the acceleration phase? (Hint: Treat the motion during the acceleration phase as though it were along a ramp at the given angle.)

Additional Problems

69 In Fig. 5-59, 4.0 kg block A and 6.0 kg block B are connected by a string of negligible mass. Force $\vec{F}_{A}=(12 \mathrm{~N}) \hat{\mathrm{i}}$ acts on block A; force $\vec{F}_{B}=(24 \mathrm{~N}) \hat{\mathrm{i}}$ acts on block B. What is the tension in the string?

Fig. 5-59 Problem 69.
70 An 80 kg man drops to a concrete patio from a window 0.50 m above the patio. He neglects to bend his knees on landing, taking 2.0 cm to stop. (a) What is his average acceleration from when his feet first touch the patio to when he stops? (b) What is the magnitude of the average stopping force exerted on him by the patio?
71 SSM Figure 5-60 shows a box of dirty money (mass $m_{1}=3.0 \mathrm{~kg}$) on a frictionless plane inclined at angle $\theta_{1}=$ 30°. The box is connected via a cord of negligible mass to a box of laundered money (mass $m_{2}=2.0 \mathrm{~kg}$) on a frictionless

Fig. 5-60 Problem 71. plane inclined at angle $\theta_{2}=$ 60°. The pulley is frictionless and has negligible mass. What is the tension in the cord?
72 Three forces act on a particle that moves with unchanging velocity $\vec{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(7 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. Two of the forces are $\vec{F}_{1}=(2 \mathrm{~N}) \hat{\mathrm{i}}+$ $(3 \mathrm{~N}) \hat{\mathrm{j}}+(-2 \mathrm{~N}) \hat{\mathrm{k}}$ and $\vec{F}_{2}=(-5 \mathrm{~N}) \hat{\mathrm{i}}+(8 \mathrm{~N}) \hat{\mathrm{j}}+(-2 \mathrm{~N}) \hat{\mathrm{k}}$. What is the third force?
73 SSM In Fig. 5-61, a tin of antioxidants ($m_{1}=1.0 \mathrm{~kg}$) on a frictionless inclined surface is connected to a tin of corned beef ($m_{2}=2.0 \mathrm{~kg}$). The pulley is massless and frictionless. An upward force of magnitude $F=6.0 \mathrm{~N}$ acts on the corned beef tin, which has a downward acceleration of $5.5 \mathrm{~m} / \mathrm{s}^{2}$. What are (a) the tension in the connecting cord and (b) angle β ?
74 The only two forces acting on a body have magnitudes of 20 N and 35 N and directions that differ by 80°. The resulting acceleration has a magnitude of $20 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the body?

Fig. 5-61 Problem 73.

